72.4.5 problem 12

Internal problem ID [14603]
Book : DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section : Chapter 1. First-Order Differential Equations. Exercises section 1.5 page 71
Problem number : 12
Date solved : Thursday, March 13, 2025 at 04:08:29 AM
CAS classification : [_quadrature]

\begin{align*} y^{\prime }&=-y^{2} \end{align*}

Maple. Time used: 0.003 (sec). Leaf size: 9
ode:=diff(y(t),t) = -y(t)^2; 
dsolve(ode,y(t), singsol=all);
 
\[ y = \frac {1}{t +c_{1}} \]
Mathematica. Time used: 0.087 (sec). Leaf size: 18
ode=D[y[t],t]==-y[t]^2; 
ic={}; 
DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
 
\begin{align*} y(t)\to \frac {1}{t-c_1} \\ y(t)\to 0 \\ \end{align*}
Sympy. Time used: 0.163 (sec). Leaf size: 7
from sympy import * 
t = symbols("t") 
y = Function("y") 
ode = Eq(y(t)**2 + Derivative(y(t), t),0) 
ics = {} 
dsolve(ode,func=y(t),ics=ics)
 
\[ y{\left (t \right )} = \frac {1}{C_{1} + t} \]