Internal
problem
ID
[14609]
Book
:
DIFFERENTIAL
EQUATIONS
by
Paul
Blanchard,
Robert
L.
Devaney,
Glen
R.
Hall.
4th
edition.
Brooks/Cole.
Boston,
USA.
2012
Section
:
Chapter
1.
First-Order
Differential
Equations.
Exercises
section
1.6
page
89
Problem
number
:
1
and
13
(ii)
Date
solved
:
Thursday, March 13, 2025 at 04:08:50 AM
CAS
classification
:
[_quadrature]
With initial conditions
ode:=diff(y(t),t) = 3*y(t)*(y(t)-2); ic:=y(-2) = -1; dsolve([ode,ic],y(t), singsol=all);
ode=D[y[t],t]==3*y[t]*(y[t]-2); ic={y[-2]==-1}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(-3*(y(t) - 2)*y(t) + Derivative(y(t), t),0) ics = {y(-2): -1} dsolve(ode,func=y(t),ics=ics)