Internal
problem
ID
[14635]
Book
:
DIFFERENTIAL
EQUATIONS
by
Paul
Blanchard,
Robert
L.
Devaney,
Glen
R.
Hall.
4th
edition.
Brooks/Cole.
Boston,
USA.
2012
Section
:
Chapter
1.
First-Order
Differential
Equations.
Exercises
section
1.6
page
89
Problem
number
:
24
Date
solved
:
Thursday, March 13, 2025 at 04:11:19 AM
CAS
classification
:
[_quadrature]
With initial conditions
ode:=diff(y(t),t) = y(t)^2-4*y(t)+2; ic:=y(0) = -2; dsolve([ode,ic],y(t), singsol=all);
ode=D[y[t],t]==y[t]^2-4*y[t]+2; ic={y[0]==-2}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(-y(t)**2 + 4*y(t) + Derivative(y(t), t) - 2,0) ics = {y(0): -2} dsolve(ode,func=y(t),ics=ics)