72.7.18 problem 18

Internal problem ID [14680]
Book : DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section : Chapter 1. First-Order Differential Equations. Exercises section 1.9 page 133
Problem number : 18
Date solved : Thursday, March 13, 2025 at 04:13:53 AM
CAS classification : [_linear]

\begin{align*} y^{\prime }&=\frac {y}{\sqrt {t^{3}-3}}+t \end{align*}

Maple. Time used: 0.003 (sec). Leaf size: 33
ode:=diff(y(t),t) = y(t)/(t^3-3)^(1/2)+t; 
dsolve(ode,y(t), singsol=all);
 
\[ y = \left (\int t \,{\mathrm e}^{-\int \frac {1}{\sqrt {t^{3}-3}}d t}d t +c_{1} \right ) {\mathrm e}^{\int \frac {1}{\sqrt {t^{3}-3}}d t} \]
Mathematica. Time used: 0.212 (sec). Leaf size: 110
ode=D[y[t],t]==y[t]/Sqrt[t^3-3]+t; 
ic={}; 
DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
 
\[ y(t)\to e^{\frac {t \sqrt {1-\frac {t^3}{3}} \operatorname {Hypergeometric2F1}\left (\frac {1}{3},\frac {1}{2},\frac {4}{3},\frac {t^3}{3}\right )}{\sqrt {t^3-3}}} \left (\int _1^t\exp \left (-\frac {\operatorname {Hypergeometric2F1}\left (\frac {1}{3},\frac {1}{2},\frac {4}{3},\frac {K[1]^3}{3}\right ) K[1] \sqrt {1-\frac {K[1]^3}{3}}}{\sqrt {K[1]^3-3}}\right ) K[1]dK[1]+c_1\right ) \]
Sympy. Time used: 5.336 (sec). Leaf size: 136
from sympy import * 
t = symbols("t") 
y = Function("y") 
ode = Eq(-t + Derivative(y(t), t) - y(t)/sqrt(t**3 - 3),0) 
ics = {} 
dsolve(ode,func=y(t),ics=ics)
 
\[ y{\left (t \right )} = \frac {C_{1} + \int t e^{\frac {\sqrt {3} i t {{}_{2}F_{1}\left (\begin {matrix} \frac {1}{3}, \frac {1}{2} \\ \frac {4}{3} \end {matrix}\middle | {\frac {t^{3}}{3}} \right )}}{3}}\, dt + \int \frac {y{\left (t \right )} e^{\frac {\sqrt {3} i t \Gamma \left (\frac {1}{3}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {1}{3}, \frac {1}{2} \\ \frac {4}{3} \end {matrix}\middle | {\frac {t^{3}}{3}} \right )}}{9 \Gamma \left (\frac {4}{3}\right )}}}{\sqrt {t^{3} - 3}}\, dt}{e^{\frac {\sqrt {3} i t {{}_{2}F_{1}\left (\begin {matrix} \frac {1}{3}, \frac {1}{2} \\ \frac {4}{3} \end {matrix}\middle | {\frac {t^{3}}{3}} \right )}}{3}} + \int \frac {e^{\frac {\sqrt {3} i t {{}_{2}F_{1}\left (\begin {matrix} \frac {1}{3}, \frac {1}{2} \\ \frac {4}{3} \end {matrix}\middle | {\frac {t^{3}}{3}} \right )}}{3}}}{\sqrt {t^{3} - 3}}\, dt} \]