Internal
problem
ID
[15072]
Book
:
Ordinary
Differential
Equations.
An
introduction
to
the
fundamentals.
Kenneth
B.
Howell.
second
edition.
CRC
Press.
FL,
USA.
2020
Section
:
Chapter
4.
SEPARABLE
FIRST
ORDER
EQUATIONS.
Additional
exercises.
page
90
Problem
number
:
4.7
(L)
Date
solved
:
Tuesday, January 28, 2025 at 07:29:40 AM
CAS
classification
:
[_separable]
Time used: 0.002 (sec). Leaf size: 23
Time used: 4.257 (sec). Leaf size: 1162
\begin{align*}
y(x)\to \frac {-8 x^{3/2}+\left (24 x^{5/2}+12 (-6+c_1) x^{3/2}+\sqrt {\left (2 x^{3/2}+6 x-8+3 c_1\right ) \left (2 x^{3/2}+6 x+3 c_1\right ){}^3}+4 x^3+36 x^2+36 (-6+c_1) x+216+9 c_1{}^2-108 c_1\right ){}^{2/3}+6 \sqrt [3]{24 x^{5/2}+12 (-6+c_1) x^{3/2}+\sqrt {\left (2 x^{3/2}+6 x-8+3 c_1\right ) \left (2 x^{3/2}+6 x+3 c_1\right ){}^3}+4 x^3+36 x^2+36 (-6+c_1) x+216+9 c_1{}^2-108 c_1}-24 x+36-12 c_1}{2 \sqrt [3]{24 x^{5/2}+12 (-6+c_1) x^{3/2}+\sqrt {\left (2 x^{3/2}+6 x-8+3 c_1\right ) \left (2 x^{3/2}+6 x+3 c_1\right ){}^3}+4 x^3+36 x^2+36 (-6+c_1) x+216+9 c_1{}^2-108 c_1}} \\
y(x)\to \frac {\left (8+8 i \sqrt {3}\right ) x^{3/2}+i \sqrt {3} \left (24 x^{5/2}+12 (-6+c_1) x^{3/2}+\sqrt {\left (2 x^{3/2}+6 x-8+3 c_1\right ) \left (2 x^{3/2}+6 x+3 c_1\right ){}^3}+4 x^3+36 x^2+36 (-6+c_1) x+216+9 c_1{}^2-108 c_1\right ){}^{2/3}-\left (24 x^{5/2}+12 (-6+c_1) x^{3/2}+\sqrt {\left (2 x^{3/2}+6 x-8+3 c_1\right ) \left (2 x^{3/2}+6 x+3 c_1\right ){}^3}+4 x^3+36 x^2+36 (-6+c_1) x+216+9 c_1{}^2-108 c_1\right ){}^{2/3}+12 \sqrt [3]{24 x^{5/2}+12 (-6+c_1) x^{3/2}+\sqrt {\left (2 x^{3/2}+6 x-8+3 c_1\right ) \left (2 x^{3/2}+6 x+3 c_1\right ){}^3}+4 x^3+36 x^2+36 (-6+c_1) x+216+9 c_1{}^2-108 c_1}+24 \left (1+i \sqrt {3}\right ) x-36 i \sqrt {3}-36+12 i \sqrt {3} c_1+12 c_1}{4 \sqrt [3]{24 x^{5/2}+12 (-6+c_1) x^{3/2}+\sqrt {\left (2 x^{3/2}+6 x-8+3 c_1\right ) \left (2 x^{3/2}+6 x+3 c_1\right ){}^3}+4 x^3+36 x^2+36 (-6+c_1) x+216+9 c_1{}^2-108 c_1}} \\
y(x)\to \frac {\left (8-8 i \sqrt {3}\right ) x^{3/2}-i \sqrt {3} \left (24 x^{5/2}+12 (-6+c_1) x^{3/2}+\sqrt {\left (2 x^{3/2}+6 x-8+3 c_1\right ) \left (2 x^{3/2}+6 x+3 c_1\right ){}^3}+4 x^3+36 x^2+36 (-6+c_1) x+216+9 c_1{}^2-108 c_1\right ){}^{2/3}-\left (24 x^{5/2}+12 (-6+c_1) x^{3/2}+\sqrt {\left (2 x^{3/2}+6 x-8+3 c_1\right ) \left (2 x^{3/2}+6 x+3 c_1\right ){}^3}+4 x^3+36 x^2+36 (-6+c_1) x+216+9 c_1{}^2-108 c_1\right ){}^{2/3}+12 \sqrt [3]{24 x^{5/2}+12 (-6+c_1) x^{3/2}+\sqrt {\left (2 x^{3/2}+6 x-8+3 c_1\right ) \left (2 x^{3/2}+6 x+3 c_1\right ){}^3}+4 x^3+36 x^2+36 (-6+c_1) x+216+9 c_1{}^2-108 c_1}+24 \left (1-i \sqrt {3}\right ) x+36 i \sqrt {3}-36-12 i \sqrt {3} c_1+12 c_1}{4 \sqrt [3]{24 x^{5/2}+12 (-6+c_1) x^{3/2}+\sqrt {\left (2 x^{3/2}+6 x-8+3 c_1\right ) \left (2 x^{3/2}+6 x+3 c_1\right ){}^3}+4 x^3+36 x^2+36 (-6+c_1) x+216+9 c_1{}^2-108 c_1}} \\
\end{align*}