73.4.16 problem 5.2 (f)

Internal problem ID [15098]
Book : Ordinary Differential Equations. An introduction to the fundamentals. Kenneth B. Howell. second edition. CRC Press. FL, USA. 2020
Section : Chapter 5. LINEAR FIRST ORDER EQUATIONS. Additional exercises. page 103
Problem number : 5.2 (f)
Date solved : Tuesday, January 28, 2025 at 07:30:39 AM
CAS classification : [_linear]

\begin{align*} x^{2} y^{\prime }+2 y x&=\sin \left (x \right ) \end{align*}

Solution by Maple

Time used: 0.001 (sec). Leaf size: 14

dsolve(x^2*diff(y(x),x)+2*x*y(x)=sin(x),y(x), singsol=all)
 
\[ y = \frac {-\cos \left (x \right )+c_{1}}{x^{2}} \]

Solution by Mathematica

Time used: 0.034 (sec). Leaf size: 22

DSolve[x^2*D[y[x],x]+2*x*y[x]==Sin[x],y[x],x,IncludeSingularSolutions -> True]
 
\[ y(x)\to \frac {\int _1^x\sin (K[1])dK[1]+c_1}{x^2} \]