73.4.18 problem 5.2 (h)

Internal problem ID [15100]
Book : Ordinary Differential Equations. An introduction to the fundamentals. Kenneth B. Howell. second edition. CRC Press. FL, USA. 2020
Section : Chapter 5. LINEAR FIRST ORDER EQUATIONS. Additional exercises. page 103
Problem number : 5.2 (h)
Date solved : Tuesday, January 28, 2025 at 07:30:43 AM
CAS classification : [_linear]

\begin{align*} y^{\prime } \cos \left (x \right )+y \sin \left (x \right )&=\cos \left (x \right )^{2} \end{align*}

Solution by Maple

Time used: 0.002 (sec). Leaf size: 10

dsolve(cos(x)*diff(y(x),x)+sin(x)*y(x)=cos(x)^2,y(x), singsol=all)
 
\[ y = \left (x +c_{1} \right ) \cos \left (x \right ) \]

Solution by Mathematica

Time used: 0.042 (sec). Leaf size: 12

DSolve[Cos[x]*D[y[x],x]+Sin[x]*y[x]==Cos[x]^2,y[x],x,IncludeSingularSolutions -> True]
 
\[ y(x)\to (x+c_1) \cos (x) \]