72.9.14 problem 29

Internal problem ID [14731]
Book : DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section : Chapter 3. Linear Systems. Exercises section 3.1. page 258
Problem number : 29
Date solved : Thursday, March 13, 2025 at 04:17:52 AM
CAS classification : system_of_ODEs

\begin{align*} \frac {d}{d t}x \left (t \right )&=2 x \left (t \right )+3 y \left (t \right )\\ \frac {d}{d t}y \left (t \right )&=x \left (t \right ) \end{align*}

With initial conditions

\begin{align*} x \left (0\right ) = 2\\ y \left (0\right ) = 3 \end{align*}

Maple. Time used: 0.047 (sec). Leaf size: 33
ode:=[diff(x(t),t) = 2*x(t)+3*y(t), diff(y(t),t) = x(t)]; 
ic:=x(0) = 2y(0) = 3; 
dsolve([ode,ic]);
 
\begin{align*} x \left (t \right ) &= \frac {15 \,{\mathrm e}^{3 t}}{4}-\frac {7 \,{\mathrm e}^{-t}}{4} \\ y &= \frac {5 \,{\mathrm e}^{3 t}}{4}+\frac {7 \,{\mathrm e}^{-t}}{4} \\ \end{align*}
Mathematica. Time used: 0.004 (sec). Leaf size: 44
ode={D[x[t],t]==2*x[t]+3*y[t],D[y[t],t]==x[t]}; 
ic={x[0]==2,y[0]==3}; 
DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
 
\begin{align*} x(t)\to \frac {1}{4} e^{-t} \left (15 e^{4 t}-7\right ) \\ y(t)\to \frac {1}{4} e^{-t} \left (5 e^{4 t}+7\right ) \\ \end{align*}
Sympy. Time used: 0.082 (sec). Leaf size: 29
from sympy import * 
t = symbols("t") 
x = Function("x") 
y = Function("y") 
ode=[Eq(-2*x(t) - 3*y(t) + Derivative(x(t), t),0),Eq(-x(t) + Derivative(y(t), t),0)] 
ics = {} 
dsolve(ode,func=[x(t),y(t)],ics=ics)
 
\[ \left [ x{\left (t \right )} = - C_{1} e^{- t} + 3 C_{2} e^{3 t}, \ y{\left (t \right )} = C_{1} e^{- t} + C_{2} e^{3 t}\right ] \]