Internal
problem
ID
[14752]
Book
:
DIFFERENTIAL
EQUATIONS
by
Paul
Blanchard,
Robert
L.
Devaney,
Glen
R.
Hall.
4th
edition.
Brooks/Cole.
Boston,
USA.
2012
Section
:
Chapter
3.
Linear
Systems.
Exercises
section
3.2.
page
277
Problem
number
:
14
(a)
Date
solved
:
Thursday, March 13, 2025 at 04:18:15 AM
CAS
classification
:
system_of_ODEs
With initial conditions
ode:=[diff(x(t),t) = 4*x(t)-2*y(t), diff(y(t),t) = x(t)+y(t)]; ic:=x(0) = 1y(0) = 0; dsolve([ode,ic]);
ode={D[x[t],t]==4*x[t]-2*y[t],D[y[t],t]==x[t]+y[t]}; ic={x[0]==1,y[0]==0}; DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") y = Function("y") ode=[Eq(-4*x(t) + 2*y(t) + Derivative(x(t), t),0),Eq(-x(t) - y(t) + Derivative(y(t), t),0)] ics = {} dsolve(ode,func=[x(t),y(t)],ics=ics)