72.11.5 problem 7

Internal problem ID [14759]
Book : DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section : Chapter 3. Linear Systems. Exercises section 3.4 page 310
Problem number : 7
Date solved : Thursday, March 13, 2025 at 04:18:24 AM
CAS classification : system_of_ODEs

\begin{align*} \frac {d}{d t}x \left (t \right )&=2 x \left (t \right )-6 y \left (t \right )\\ \frac {d}{d t}y \left (t \right )&=2 x \left (t \right )+y \left (t \right ) \end{align*}

With initial conditions

\begin{align*} x \left (0\right ) = 2\\ y \left (0\right ) = 1 \end{align*}

Maple. Time used: 0.069 (sec). Leaf size: 62
ode:=[diff(x(t),t) = 2*x(t)-6*y(t), diff(y(t),t) = 2*x(t)+y(t)]; 
ic:=x(0) = 2y(0) = 1; 
dsolve([ode,ic]);
 
\begin{align*} x \left (t \right ) &= {\mathrm e}^{\frac {3 t}{2}} \left (-\frac {10 \sqrt {47}\, \sin \left (\frac {\sqrt {47}\, t}{2}\right )}{47}+2 \cos \left (\frac {\sqrt {47}\, t}{2}\right )\right ) \\ y &= \frac {{\mathrm e}^{\frac {3 t}{2}} \left (\frac {84 \sqrt {47}\, \sin \left (\frac {\sqrt {47}\, t}{2}\right )}{47}+12 \cos \left (\frac {\sqrt {47}\, t}{2}\right )\right )}{12} \\ \end{align*}
Mathematica. Time used: 0.016 (sec). Leaf size: 94
ode={D[x[t],t]==2*x[t]-6*y[t],D[y[t],t]==2*x[t]+y[t]}; 
ic={x[0]==2,y[0]==1}; 
DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
 
\begin{align*} x(t)\to \frac {2}{47} e^{3 t/2} \left (47 \cos \left (\frac {\sqrt {47} t}{2}\right )-5 \sqrt {47} \sin \left (\frac {\sqrt {47} t}{2}\right )\right ) \\ y(t)\to \frac {1}{47} e^{3 t/2} \left (7 \sqrt {47} \sin \left (\frac {\sqrt {47} t}{2}\right )+47 \cos \left (\frac {\sqrt {47} t}{2}\right )\right ) \\ \end{align*}
Sympy. Time used: 0.203 (sec). Leaf size: 99
from sympy import * 
t = symbols("t") 
x = Function("x") 
y = Function("y") 
ode=[Eq(-2*x(t) + 6*y(t) + Derivative(x(t), t),0),Eq(-2*x(t) - y(t) + Derivative(y(t), t),0)] 
ics = {} 
dsolve(ode,func=[x(t),y(t)],ics=ics)
 
\[ \left [ x{\left (t \right )} = \left (\frac {C_{1}}{4} - \frac {\sqrt {47} C_{2}}{4}\right ) e^{\frac {3 t}{2}} \cos {\left (\frac {\sqrt {47} t}{2} \right )} - \left (\frac {\sqrt {47} C_{1}}{4} + \frac {C_{2}}{4}\right ) e^{\frac {3 t}{2}} \sin {\left (\frac {\sqrt {47} t}{2} \right )}, \ y{\left (t \right )} = C_{1} e^{\frac {3 t}{2}} \cos {\left (\frac {\sqrt {47} t}{2} \right )} - C_{2} e^{\frac {3 t}{2}} \sin {\left (\frac {\sqrt {47} t}{2} \right )}\right ] \]