Internal
problem
ID
[14762]
Book
:
DIFFERENTIAL
EQUATIONS
by
Paul
Blanchard,
Robert
L.
Devaney,
Glen
R.
Hall.
4th
edition.
Brooks/Cole.
Boston,
USA.
2012
Section
:
Chapter
3.
Linear
Systems.
Exercises
section
3.4
page
310
Problem
number
:
10
Date
solved
:
Thursday, March 13, 2025 at 04:18:28 AM
CAS
classification
:
system_of_ODEs
With initial conditions
ode:=[diff(x(t),t) = 2*x(t)+2*y(t), diff(y(t),t) = -4*x(t)+6*y(t)]; ic:=x(0) = 1y(0) = 1; dsolve([ode,ic]);
ode={D[x[t],t]==2*x[t]+2*y[t],D[y[t],t]==-4*x[t]+6*y[t]}; ic={x[0]==1,y[0]==1}; DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") y = Function("y") ode=[Eq(-2*x(t) - 2*y(t) + Derivative(x(t), t),0),Eq(4*x(t) - 6*y(t) + Derivative(y(t), t),0)] ics = {} dsolve(ode,func=[x(t),y(t)],ics=ics)