Internal
problem
ID
[15151]
Book
:
Ordinary
Differential
Equations.
An
introduction
to
the
fundamentals.
Kenneth
B.
Howell.
second
edition.
CRC
Press.
FL,
USA.
2020
Section
:
Chapter
7.
The
exact
form
and
general
integrating
fators.
Additional
exercises.
page
141
Problem
number
:
7.5
(b)
Date
solved
:
Tuesday, January 28, 2025 at 07:38:12 AM
CAS
classification
:
[[_homogeneous, `class G`], _rational]
Time used: 0.006 (sec). Leaf size: 16
Time used: 52.298 (sec). Leaf size: 1270
\begin{align*}
y(x)\to -\frac {1}{2} \sqrt {\frac {\sqrt [3]{\sqrt {-768 x^3+81 c_1{}^4 x^2}+9 c_1{}^2 x}}{\sqrt [3]{2} 3^{2/3}}+\frac {4 \sqrt [3]{\frac {2}{3}} x}{\sqrt [3]{\sqrt {-768 x^3+81 c_1{}^4 x^2}+9 c_1{}^2 x}}+\frac {c_1{}^2}{4}}-\frac {1}{2} \sqrt {-\frac {c_1{}^3}{4 \sqrt {\frac {\sqrt [3]{\sqrt {-768 x^3+81 c_1{}^4 x^2}+9 c_1{}^2 x}}{\sqrt [3]{2} 3^{2/3}}+\frac {4 \sqrt [3]{\frac {2}{3}} x}{\sqrt [3]{\sqrt {-768 x^3+81 c_1{}^4 x^2}+9 c_1{}^2 x}}+\frac {c_1{}^2}{4}}}-\frac {\sqrt [3]{\sqrt {-768 x^3+81 c_1{}^4 x^2}+9 c_1{}^2 x}}{\sqrt [3]{2} 3^{2/3}}-\frac {4 \sqrt [3]{\frac {2}{3}} x}{\sqrt [3]{\sqrt {-768 x^3+81 c_1{}^4 x^2}+9 c_1{}^2 x}}+\frac {c_1{}^2}{2}}+\frac {c_1}{4} \\
y(x)\to -\frac {1}{2} \sqrt {\frac {\sqrt [3]{\sqrt {-768 x^3+81 c_1{}^4 x^2}+9 c_1{}^2 x}}{\sqrt [3]{2} 3^{2/3}}+\frac {4 \sqrt [3]{\frac {2}{3}} x}{\sqrt [3]{\sqrt {-768 x^3+81 c_1{}^4 x^2}+9 c_1{}^2 x}}+\frac {c_1{}^2}{4}}+\frac {1}{2} \sqrt {-\frac {c_1{}^3}{4 \sqrt {\frac {\sqrt [3]{\sqrt {-768 x^3+81 c_1{}^4 x^2}+9 c_1{}^2 x}}{\sqrt [3]{2} 3^{2/3}}+\frac {4 \sqrt [3]{\frac {2}{3}} x}{\sqrt [3]{\sqrt {-768 x^3+81 c_1{}^4 x^2}+9 c_1{}^2 x}}+\frac {c_1{}^2}{4}}}-\frac {\sqrt [3]{\sqrt {-768 x^3+81 c_1{}^4 x^2}+9 c_1{}^2 x}}{\sqrt [3]{2} 3^{2/3}}-\frac {4 \sqrt [3]{\frac {2}{3}} x}{\sqrt [3]{\sqrt {-768 x^3+81 c_1{}^4 x^2}+9 c_1{}^2 x}}+\frac {c_1{}^2}{2}}+\frac {c_1}{4} \\
y(x)\to \frac {1}{2} \sqrt {\frac {\sqrt [3]{\sqrt {-768 x^3+81 c_1{}^4 x^2}+9 c_1{}^2 x}}{\sqrt [3]{2} 3^{2/3}}+\frac {4 \sqrt [3]{\frac {2}{3}} x}{\sqrt [3]{\sqrt {-768 x^3+81 c_1{}^4 x^2}+9 c_1{}^2 x}}+\frac {c_1{}^2}{4}}-\frac {1}{2} \sqrt {\frac {c_1{}^3}{4 \sqrt {\frac {\sqrt [3]{\sqrt {-768 x^3+81 c_1{}^4 x^2}+9 c_1{}^2 x}}{\sqrt [3]{2} 3^{2/3}}+\frac {4 \sqrt [3]{\frac {2}{3}} x}{\sqrt [3]{\sqrt {-768 x^3+81 c_1{}^4 x^2}+9 c_1{}^2 x}}+\frac {c_1{}^2}{4}}}-\frac {\sqrt [3]{\sqrt {-768 x^3+81 c_1{}^4 x^2}+9 c_1{}^2 x}}{\sqrt [3]{2} 3^{2/3}}-\frac {4 \sqrt [3]{\frac {2}{3}} x}{\sqrt [3]{\sqrt {-768 x^3+81 c_1{}^4 x^2}+9 c_1{}^2 x}}+\frac {c_1{}^2}{2}}+\frac {c_1}{4} \\
y(x)\to \frac {1}{2} \sqrt {\frac {\sqrt [3]{\sqrt {-768 x^3+81 c_1{}^4 x^2}+9 c_1{}^2 x}}{\sqrt [3]{2} 3^{2/3}}+\frac {4 \sqrt [3]{\frac {2}{3}} x}{\sqrt [3]{\sqrt {-768 x^3+81 c_1{}^4 x^2}+9 c_1{}^2 x}}+\frac {c_1{}^2}{4}}+\frac {1}{2} \sqrt {\frac {c_1{}^3}{4 \sqrt {\frac {\sqrt [3]{\sqrt {-768 x^3+81 c_1{}^4 x^2}+9 c_1{}^2 x}}{\sqrt [3]{2} 3^{2/3}}+\frac {4 \sqrt [3]{\frac {2}{3}} x}{\sqrt [3]{\sqrt {-768 x^3+81 c_1{}^4 x^2}+9 c_1{}^2 x}}+\frac {c_1{}^2}{4}}}-\frac {\sqrt [3]{\sqrt {-768 x^3+81 c_1{}^4 x^2}+9 c_1{}^2 x}}{\sqrt [3]{2} 3^{2/3}}-\frac {4 \sqrt [3]{\frac {2}{3}} x}{\sqrt [3]{\sqrt {-768 x^3+81 c_1{}^4 x^2}+9 c_1{}^2 x}}+\frac {c_1{}^2}{2}}+\frac {c_1}{4} \\
y(x)\to 0 \\
\end{align*}