8.13.5 problem problem 11

Internal problem ID [926]
Book : Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section : Section 7.2, Matrices and Linear systems. Page 417
Problem number : problem 11
Date solved : Wednesday, February 05, 2025 at 04:48:29 AM
CAS classification : system_of_ODEs

\begin{align*} \frac {d}{d t}x_{1} \left (t \right )&=x_{2} \left (t \right )\\ \frac {d}{d t}x_{2} \left (t \right )&=2 x_{3} \left (t \right )\\ \frac {d}{d t}x_{3} \left (t \right )&=3 x_{4} \left (t \right )\\ \frac {d}{d t}x_{4} \left (t \right )&=4 x_{1} \left (t \right ) \end{align*}

Solution by Maple

Time used: 0.012 (sec). Leaf size: 169

dsolve([diff(x__1(t),t)=x__2(t),diff(x__2(t),t)=2*x__3(t),diff(x__3(t),t)=3*x__4(t),diff(x__4(t),t)=4*x__1(t)],singsol=all)
 
\begin{align*} x_{1} \left (t \right ) &= c_1 \,{\mathrm e}^{-24^{{1}/{4}} t}+c_2 \,{\mathrm e}^{24^{{1}/{4}} t}-c_3 \sin \left (24^{{1}/{4}} t \right )+c_4 \cos \left (24^{{1}/{4}} t \right ) \\ x_{2} \left (t \right ) &= -24^{{1}/{4}} \left (c_1 \,{\mathrm e}^{-24^{{1}/{4}} t}-c_2 \,{\mathrm e}^{24^{{1}/{4}} t}+\cos \left (24^{{1}/{4}} t \right ) c_3 +\sin \left (24^{{1}/{4}} t \right ) c_4 \right ) \\ x_{3} \left (t \right ) &= \sqrt {6}\, \left (c_1 \,{\mathrm e}^{-24^{{1}/{4}} t}+c_2 \,{\mathrm e}^{24^{{1}/{4}} t}-c_4 \cos \left (24^{{1}/{4}} t \right )+c_3 \sin \left (24^{{1}/{4}} t \right )\right ) \\ x_{4} \left (t \right ) &= -\frac {24^{{3}/{4}} \left (c_1 \,{\mathrm e}^{-24^{{1}/{4}} t}-c_2 \,{\mathrm e}^{24^{{1}/{4}} t}-\cos \left (24^{{1}/{4}} t \right ) c_3 -\sin \left (24^{{1}/{4}} t \right ) c_4 \right )}{6} \\ \end{align*}

Solution by Mathematica

Time used: 0.025 (sec). Leaf size: 400

DSolve[{D[ x1[t],t]==x2[t],D[ x2[t],t]==2*x3[t],D[ x3[t],t]==3*x4[t],D[ x4[t],t]==4*x1[t]},{x1[t],x2[t],x3[t],x4[t]},t,IncludeSingularSolutions -> True]
 
\begin{align*} \text {x1}(t)\to \frac {1}{4} c_1 \text {RootSum}\left [\text {$\#$1}^4-24\&,e^{\text {$\#$1} t}\&\right ]+\frac {1}{4} c_2 \text {RootSum}\left [\text {$\#$1}^4-24\&,\frac {e^{\text {$\#$1} t}}{\text {$\#$1}}\&\right ]+\frac {3}{2} c_4 \text {RootSum}\left [\text {$\#$1}^4-24\&,\frac {e^{\text {$\#$1} t}}{\text {$\#$1}^3}\&\right ]+\frac {1}{2} c_3 \text {RootSum}\left [\text {$\#$1}^4-24\&,\frac {e^{\text {$\#$1} t}}{\text {$\#$1}^2}\&\right ] \\ \text {x2}(t)\to \frac {1}{4} c_2 \text {RootSum}\left [\text {$\#$1}^4-24\&,e^{\text {$\#$1} t}\&\right ]+\frac {1}{2} c_3 \text {RootSum}\left [\text {$\#$1}^4-24\&,\frac {e^{\text {$\#$1} t}}{\text {$\#$1}}\&\right ]+6 c_1 \text {RootSum}\left [\text {$\#$1}^4-24\&,\frac {e^{\text {$\#$1} t}}{\text {$\#$1}^3}\&\right ]+\frac {3}{2} c_4 \text {RootSum}\left [\text {$\#$1}^4-24\&,\frac {e^{\text {$\#$1} t}}{\text {$\#$1}^2}\&\right ] \\ \text {x3}(t)\to \frac {1}{4} c_3 \text {RootSum}\left [\text {$\#$1}^4-24\&,e^{\text {$\#$1} t}\&\right ]+\frac {3}{4} c_4 \text {RootSum}\left [\text {$\#$1}^4-24\&,\frac {e^{\text {$\#$1} t}}{\text {$\#$1}}\&\right ]+3 c_2 \text {RootSum}\left [\text {$\#$1}^4-24\&,\frac {e^{\text {$\#$1} t}}{\text {$\#$1}^3}\&\right ]+3 c_1 \text {RootSum}\left [\text {$\#$1}^4-24\&,\frac {e^{\text {$\#$1} t}}{\text {$\#$1}^2}\&\right ] \\ \text {x4}(t)\to \frac {1}{4} c_4 \text {RootSum}\left [\text {$\#$1}^4-24\&,e^{\text {$\#$1} t}\&\right ]+c_1 \text {RootSum}\left [\text {$\#$1}^4-24\&,\frac {e^{\text {$\#$1} t}}{\text {$\#$1}}\&\right ]+2 c_3 \text {RootSum}\left [\text {$\#$1}^4-24\&,\frac {e^{\text {$\#$1} t}}{\text {$\#$1}^3}\&\right ]+c_2 \text {RootSum}\left [\text {$\#$1}^4-24\&,\frac {e^{\text {$\#$1} t}}{\text {$\#$1}^2}\&\right ] \\ \end{align*}