72.12.10 problem 18

Internal problem ID [14778]
Book : DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section : Chapter 3. Linear Systems. Exercises section 3.5 page 327
Problem number : 18
Date solved : Thursday, March 13, 2025 at 04:18:48 AM
CAS classification : system_of_ODEs

\begin{align*} \frac {d}{d t}x \left (t \right )&=2 x \left (t \right )+4 y \left (t \right )\\ \frac {d}{d t}y \left (t \right )&=3 x \left (t \right )+6 y \left (t \right ) \end{align*}

With initial conditions

\begin{align*} x \left (0\right ) = 1\\ y \left (0\right ) = 0 \end{align*}

Maple. Time used: 0.046 (sec). Leaf size: 23
ode:=[diff(x(t),t) = 2*x(t)+4*y(t), diff(y(t),t) = 3*x(t)+6*y(t)]; 
ic:=x(0) = 1y(0) = 0; 
dsolve([ode,ic]);
 
\begin{align*} x \left (t \right ) &= \frac {3}{4}+\frac {{\mathrm e}^{8 t}}{4} \\ y &= \frac {3 \,{\mathrm e}^{8 t}}{8}-\frac {3}{8} \\ \end{align*}
Mathematica. Time used: 0.003 (sec). Leaf size: 30
ode={D[x[t],t]==2*x[t]+4*y[t],D[y[t],t]==3*x[t]+6*y[t]}; 
ic={x[0]==1,y[0]==0}; 
DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
 
\begin{align*} x(t)\to \frac {1}{4} \left (e^{8 t}+3\right ) \\ y(t)\to \frac {3}{8} \left (e^{8 t}-1\right ) \\ \end{align*}
Sympy. Time used: 0.077 (sec). Leaf size: 26
from sympy import * 
t = symbols("t") 
x = Function("x") 
y = Function("y") 
ode=[Eq(-2*x(t) - 4*y(t) + Derivative(x(t), t),0),Eq(-3*x(t) - 6*y(t) + Derivative(y(t), t),0)] 
ics = {} 
dsolve(ode,func=[x(t),y(t)],ics=ics)
 
\[ \left [ x{\left (t \right )} = - 2 C_{1} + \frac {2 C_{2} e^{8 t}}{3}, \ y{\left (t \right )} = C_{1} + C_{2} e^{8 t}\right ] \]