72.15.5 problem 19 (ii)

Internal problem ID [14807]
Book : DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section : Chapter 3. Linear Systems. Review Exercises for chapter 3. page 376
Problem number : 19 (ii)
Date solved : Thursday, March 13, 2025 at 04:19:19 AM
CAS classification : system_of_ODEs

\begin{align*} \frac {d}{d t}x \left (t \right )&=-3 x \left (t \right )+y \left (t \right )\\ \frac {d}{d t}y \left (t \right )&=-x \left (t \right )+y \left (t \right ) \end{align*}

Maple. Time used: 0.050 (sec). Leaf size: 81
ode:=[diff(x(t),t) = -3*x(t)+y(t), diff(y(t),t) = -x(t)+y(t)]; 
dsolve(ode);
 
\begin{align*} x \left (t \right ) &= c_{1} {\mathrm e}^{\left (\sqrt {3}-1\right ) t}+c_{2} {\mathrm e}^{-\left (1+\sqrt {3}\right ) t} \\ y &= c_{1} {\mathrm e}^{\left (\sqrt {3}-1\right ) t} \sqrt {3}-c_{2} {\mathrm e}^{-\left (1+\sqrt {3}\right ) t} \sqrt {3}+2 c_{1} {\mathrm e}^{\left (\sqrt {3}-1\right ) t}+2 c_{2} {\mathrm e}^{-\left (1+\sqrt {3}\right ) t} \\ \end{align*}
Mathematica. Time used: 0.008 (sec). Leaf size: 147
ode={D[x[t],t]==-3*x[t]+1*y[t],D[y[t],t]==-1*x[t]+1*y[t]}; 
ic={}; 
DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
 
\begin{align*} x(t)\to \frac {1}{6} e^{-\left (\left (1+\sqrt {3}\right ) t\right )} \left (c_1 \left (\left (3-2 \sqrt {3}\right ) e^{2 \sqrt {3} t}+3+2 \sqrt {3}\right )+\sqrt {3} c_2 \left (e^{2 \sqrt {3} t}-1\right )\right ) \\ y(t)\to \frac {1}{6} e^{-\left (\left (1+\sqrt {3}\right ) t\right )} \left (c_2 \left (\left (3+2 \sqrt {3}\right ) e^{2 \sqrt {3} t}+3-2 \sqrt {3}\right )-\sqrt {3} c_1 \left (e^{2 \sqrt {3} t}-1\right )\right ) \\ \end{align*}
Sympy. Time used: 0.190 (sec). Leaf size: 65
from sympy import * 
t = symbols("t") 
x = Function("x") 
y = Function("y") 
ode=[Eq(3*x(t) - y(t) + Derivative(x(t), t),0),Eq(x(t) - y(t) + Derivative(y(t), t),0)] 
ics = {} 
dsolve(ode,func=[x(t),y(t)],ics=ics)
 
\[ \left [ x{\left (t \right )} = C_{1} \left (2 - \sqrt {3}\right ) e^{- t \left (1 - \sqrt {3}\right )} + C_{2} \left (\sqrt {3} + 2\right ) e^{- t \left (1 + \sqrt {3}\right )}, \ y{\left (t \right )} = C_{1} e^{- t \left (1 - \sqrt {3}\right )} + C_{2} e^{- t \left (1 + \sqrt {3}\right )}\right ] \]