Internal
problem
ID
[14825]
Book
:
DIFFERENTIAL
EQUATIONS
by
Paul
Blanchard,
Robert
L.
Devaney,
Glen
R.
Hall.
4th
edition.
Brooks/Cole.
Boston,
USA.
2012
Section
:
Chapter
4.
Forcing
and
Resonance.
Section
4.1
page
399
Problem
number
:
8
Date
solved
:
Thursday, March 13, 2025 at 04:20:27 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=diff(diff(y(t),t),t)+diff(y(t),t)-6*y(t) = 4*exp(-3*t); dsolve(ode,y(t), singsol=all);
ode=D[y[t],{t,2}]+D[y[t],t]-6*y[t]==4*Exp[-3*t]; ic={}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(-6*y(t) + Derivative(y(t), t) + Derivative(y(t), (t, 2)) - 4*exp(-3*t),0) ics = {} dsolve(ode,func=y(t),ics=ics)