73.8.48 problem 13.8 (iii)

Internal problem ID [15256]
Book : Ordinary Differential Equations. An introduction to the fundamentals. Kenneth B. Howell. second edition. CRC Press. FL, USA. 2020
Section : Chapter 13. Higher order equations: Extending first order concepts. Additional exercises page 259
Problem number : 13.8 (iii)
Date solved : Tuesday, January 28, 2025 at 07:51:01 AM
CAS classification : [[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

\begin{align*} y^{\prime \prime }&=-2 x {y^{\prime }}^{2} \end{align*}

With initial conditions

\begin{align*} y \left (1\right )&=0\\ y^{\prime }\left (1\right )&=1 \end{align*}

Solution by Maple

Time used: 0.012 (sec). Leaf size: 11

dsolve([diff(y(x),x$2)=-2*x*diff(y(x),x)^2,y(1) = 0, D(y)(1) = 1],y(x), singsol=all)
 
\[ y = \frac {x -1}{x} \]

Solution by Mathematica

Time used: 32.985 (sec). Leaf size: 27

DSolve[{D[y[x],{x,2}]==-2*x*D[y[x],x]^2,{y[1]==0,Derivative[1][y][1]==1}},y[x],x,IncludeSingularSolutions -> True]
 
\begin{align*} y(x)\to \frac {x-1}{x} \\ y(x)\to \int _1^x\frac {1}{K[1]^2}dK[1] \\ \end{align*}