72.19.1 problem 27

Internal problem ID [14880]
Book : DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section : Chapter 6. Laplace transform. Section 6.3 page 600
Problem number : 27
Date solved : Thursday, March 13, 2025 at 05:18:17 AM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} y^{\prime \prime }+4 y&=8 \end{align*}

Using Laplace method With initial conditions

\begin{align*} y \left (0\right )&=11\\ y^{\prime }\left (0\right )&=5 \end{align*}

Maple. Time used: 8.779 (sec). Leaf size: 18
ode:=diff(diff(y(t),t),t)+4*y(t) = 8; 
ic:=y(0) = 11, D(y)(0) = 5; 
dsolve([ode,ic],y(t),method='laplace');
 
\[ y = 9 \cos \left (2 t \right )+\frac {5 \sin \left (2 t \right )}{2}+2 \]
Mathematica. Time used: 0.013 (sec). Leaf size: 19
ode=D[y[t],{t,2}]+4*y[t]==8; 
ic={y[0]==11,Derivative[1][y][0] ==5}; 
DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
 
\[ y(t)\to 9 \cos (2 t)+5 \sin (t) \cos (t)+2 \]
Sympy. Time used: 0.083 (sec). Leaf size: 19
from sympy import * 
t = symbols("t") 
y = Function("y") 
ode = Eq(4*y(t) + Derivative(y(t), (t, 2)) - 8,0) 
ics = {y(0): 11, Subs(Derivative(y(t), t), t, 0): 5} 
dsolve(ode,func=y(t),ics=ics)
 
\[ y{\left (t \right )} = \frac {5 \sin {\left (2 t \right )}}{2} + 9 \cos {\left (2 t \right )} + 2 \]