73.9.1 problem 14.1 (a)

Internal problem ID [15262]
Book : Ordinary Differential Equations. An introduction to the fundamentals. Kenneth B. Howell. second edition. CRC Press. FL, USA. 2020
Section : Chapter 14. Higher order equations and the reduction of order method. Additional exercises page 277
Problem number : 14.1 (a)
Date solved : Tuesday, January 28, 2025 at 08:25:31 PM
CAS classification : [[_2nd_order, _linear, _nonhomogeneous]]

\begin{align*} y^{\prime \prime }+x^{2} y^{\prime }-4 y&=x^{3} \end{align*}

Solution by Maple

Time used: 0.878 (sec). Leaf size: 127

dsolve(diff(y(x),x$2)+x^2*diff(y(x),x)-4*y(x)=x^3,y(x), singsol=all)
 
\[ y = -\left (\int \operatorname {HeunT}\left (-4 \,3^{{2}/{3}}, -3, 0, \frac {3^{{2}/{3}} x}{3}\right ) \left (\int \frac {{\mathrm e}^{\frac {x^{3}}{3}}}{\operatorname {HeunT}\left (-4 \,3^{{2}/{3}}, -3, 0, \frac {3^{{2}/{3}} x}{3}\right )^{2}}d x \right ) x^{3}d x +\left (-c_{1} -\int \operatorname {HeunT}\left (-4 \,3^{{2}/{3}}, -3, 0, \frac {3^{{2}/{3}} x}{3}\right ) x^{3}d x \right ) \left (\int \frac {{\mathrm e}^{\frac {x^{3}}{3}}}{\operatorname {HeunT}\left (-4 \,3^{{2}/{3}}, -3, 0, \frac {3^{{2}/{3}} x}{3}\right )^{2}}d x \right )-c_{2} \right ) \operatorname {HeunT}\left (-4 \,3^{{2}/{3}}, -3, 0, \frac {3^{{2}/{3}} x}{3}\right ) {\mathrm e}^{-\frac {x^{3}}{3}} \]

Solution by Mathematica

Time used: 0.545 (sec). Leaf size: 194

DSolve[D[y[x],{x,2}]+x^2*D[y[x],x]-4*y[x]==x^3,y[x],x,IncludeSingularSolutions -> True]
 
\[ y(x)\to e^{-\frac {x^3}{3}} \text {HeunT}[4,-2,0,0,-1,x] \left (\int _1^x-\frac {e^{\frac {K[2]^3}{3}} \text {HeunT}[4,0,0,0,1,K[2]] K[2]^3}{\text {HeunT}[4,-2,0,0,-1,K[2]] \text {HeunTPrime}[4,0,0,0,1,K[2]]+\text {HeunT}[4,0,0,0,1,K[2]] \left (\text {HeunT}[4,-2,0,0,-1,K[2]] K[2]^2-\text {HeunTPrime}[4,-2,0,0,-1,K[2]]\right )}dK[2]+c_2\right )+\text {HeunT}[4,0,0,0,1,x] \left (\int _1^x\frac {\text {HeunT}[4,-2,0,0,-1,K[1]] K[1]^3}{\text {HeunT}[4,-2,0,0,-1,K[1]] \text {HeunTPrime}[4,0,0,0,1,K[1]]+\text {HeunT}[4,0,0,0,1,K[1]] \left (\text {HeunT}[4,-2,0,0,-1,K[1]] K[1]^2-\text {HeunTPrime}[4,-2,0,0,-1,K[1]]\right )}dK[1]+c_1\right ) \]