Internal
problem
ID
[14882]
Book
:
DIFFERENTIAL
EQUATIONS
by
Paul
Blanchard,
Robert
L.
Devaney,
Glen
R.
Hall.
4th
edition.
Brooks/Cole.
Boston,
USA.
2012
Section
:
Chapter
6.
Laplace
transform.
Section
6.3
page
600
Problem
number
:
29
Date
solved
:
Thursday, March 13, 2025 at 05:18:19 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
Using Laplace method With initial conditions
ode:=diff(diff(y(t),t),t)-4*diff(y(t),t)+5*y(t) = 2*exp(t); ic:=y(0) = 3, D(y)(0) = 1; dsolve([ode,ic],y(t),method='laplace');
ode=D[y[t],{t,2}]-4*D[y[t],t]+5*y[t]==2*Exp[t]; ic={y[0]==3,Derivative[1][y][0] ==1}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(5*y(t) - 2*exp(t) - 4*Derivative(y(t), t) + Derivative(y(t), (t, 2)),0) ics = {y(0): 3, Subs(Derivative(y(t), t), t, 0): 1} dsolve(ode,func=y(t),ics=ics)