73.9.24 problem 14.2 (n)

Internal problem ID [15285]
Book : Ordinary Differential Equations. An introduction to the fundamentals. Kenneth B. Howell. second edition. CRC Press. FL, USA. 2020
Section : Chapter 14. Higher order equations and the reduction of order method. Additional exercises page 277
Problem number : 14.2 (n)
Date solved : Tuesday, January 28, 2025 at 07:51:34 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y&=0 \end{align*}

Using reduction of order method given that one solution is

\begin{align*} y&=\frac {\cos \left (x \right )}{\sqrt {x}} \end{align*}

Solution by Maple

Time used: 0.181 (sec). Leaf size: 17

dsolve([x^2*diff(y(x),x$2)+x*diff(y(x),x)+(x^2-1/4)*y(x)=0,1/sqrt(x)*cos(x)],singsol=all)
 
\[ y = \frac {\sin \left (x \right ) c_{1} +\cos \left (x \right ) c_{2}}{\sqrt {x}} \]

Solution by Mathematica

Time used: 0.030 (sec). Leaf size: 39

DSolve[x^2*D[y[x],{x,2}]+x*D[y[x],x]+(x^2-1/4)*y[x]==0,y[x],x,IncludeSingularSolutions -> True]
 
\[ y(x)\to \frac {e^{-i x} \left (2 c_1-i c_2 e^{2 i x}\right )}{2 \sqrt {x}} \]