73.11.7 problem 17.2 (a)

Internal problem ID [15321]
Book : Ordinary Differential Equations. An introduction to the fundamentals. Kenneth B. Howell. second edition. CRC Press. FL, USA. 2020
Section : Chapter 17. Second order Homogeneous equations with constant coefficients. Additional exercises page 334
Problem number : 17.2 (a)
Date solved : Tuesday, January 28, 2025 at 07:52:28 AM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} y^{\prime \prime }-8 y^{\prime }+15 y&=0 \end{align*}

With initial conditions

\begin{align*} y \left (0\right )&=1\\ y^{\prime }\left (0\right )&=0 \end{align*}

Solution by Maple

Time used: 0.016 (sec). Leaf size: 17

dsolve([diff(y(x),x$2)-8*diff(y(x),x)+15*y(x)=0,y(0) = 1, D(y)(0) = 0],y(x), singsol=all)
 
\[ y = -\frac {3 \,{\mathrm e}^{5 x}}{2}+\frac {5 \,{\mathrm e}^{3 x}}{2} \]

Solution by Mathematica

Time used: 0.014 (sec). Leaf size: 23

DSolve[{D[y[x],{x,2}]-8*D[y[x],x]+15*y[x]==0,{y[0]==1,Derivative[1][y][0] ==0}},y[x],x,IncludeSingularSolutions -> True]
 
\[ y(x)\to \frac {1}{2} e^{3 x} \left (5-3 e^{2 x}\right ) \]