73.11.21 problem 17.4 (c)

Internal problem ID [15335]
Book : Ordinary Differential Equations. An introduction to the fundamentals. Kenneth B. Howell. second edition. CRC Press. FL, USA. 2020
Section : Chapter 17. Second order Homogeneous equations with constant coefficients. Additional exercises page 334
Problem number : 17.4 (c)
Date solved : Tuesday, January 28, 2025 at 07:52:56 AM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} y^{\prime \prime }-8 y^{\prime }+16 y&=0 \end{align*}

With initial conditions

\begin{align*} y \left (0\right )&=3\\ y^{\prime }\left (0\right )&=14 \end{align*}

Solution by Maple

Time used: 0.016 (sec). Leaf size: 14

dsolve([diff(y(x),x$2)-8*diff(y(x),x)+16*y(x)=0,y(0) = 3, D(y)(0) = 14],y(x), singsol=all)
 
\[ y = {\mathrm e}^{4 x} \left (2 x +3\right ) \]

Solution by Mathematica

Time used: 0.014 (sec). Leaf size: 16

DSolve[{D[y[x],{x,2}]-8*D[y[x],x]+16*y[x]==0,{y[0]==3,Derivative[1][y][0] ==14}},y[x],x,IncludeSingularSolutions -> True]
 
\[ y(x)\to e^{4 x} (2 x+3) \]