73.13.2 problem 20.1 (b)

Internal problem ID [15380]
Book : Ordinary Differential Equations. An introduction to the fundamentals. Kenneth B. Howell. second edition. CRC Press. FL, USA. 2020
Section : Chapter 20. Euler equations. Additional exercises page 382
Problem number : 20.1 (b)
Date solved : Tuesday, January 28, 2025 at 07:53:55 AM
CAS classification : [[_2nd_order, _exact, _linear, _homogeneous]]

\begin{align*} x^{2} y^{\prime \prime }-2 y&=0 \end{align*}

Solution by Maple

Time used: 0.005 (sec). Leaf size: 15

dsolve(x^2*diff(y(x),x$2)-2*y(x)=0,y(x), singsol=all)
 
\[ y = \frac {c_{2} x^{3}+c_{1}}{x} \]

Solution by Mathematica

Time used: 0.010 (sec). Leaf size: 18

DSolve[x^2*D[y[x],{x,2}]-2*y[x]==0,y[x],x,IncludeSingularSolutions -> True]
 
\[ y(x)\to \frac {c_2 x^3+c_1}{x} \]