73.13.6 problem 20.1 (f)

Internal problem ID [15384]
Book : Ordinary Differential Equations. An introduction to the fundamentals. Kenneth B. Howell. second edition. CRC Press. FL, USA. 2020
Section : Chapter 20. Euler equations. Additional exercises page 382
Problem number : 20.1 (f)
Date solved : Tuesday, January 28, 2025 at 07:54:01 AM
CAS classification : [[_Emden, _Fowler]]

\begin{align*} x^{2} y^{\prime \prime }+5 x y^{\prime }+4 y&=0 \end{align*}

Solution by Maple

Time used: 0.003 (sec). Leaf size: 14

dsolve(x^2*diff(y(x),x$2)+5*x*diff(y(x),x)+4*y(x)=0,y(x), singsol=all)
 
\[ y = \frac {\ln \left (x \right ) c_{2} +c_{1}}{x^{2}} \]

Solution by Mathematica

Time used: 0.017 (sec). Leaf size: 18

DSolve[x^2*D[y[x],{x,2}]+5*x*D[y[x],x]+4*y[x]==0,y[x],x,IncludeSingularSolutions -> True]
 
\[ y(x)\to \frac {2 c_2 \log (x)+c_1}{x^2} \]