73.13.15 problem 20.1 (o)

Internal problem ID [15393]
Book : Ordinary Differential Equations. An introduction to the fundamentals. Kenneth B. Howell. second edition. CRC Press. FL, USA. 2020
Section : Chapter 20. Euler equations. Additional exercises page 382
Problem number : 20.1 (o)
Date solved : Tuesday, January 28, 2025 at 07:54:18 AM
CAS classification : [[_2nd_order, _missing_y]]

\begin{align*} x^{2} y^{\prime \prime }+x y^{\prime }&=0 \end{align*}

Solution by Maple

Time used: 0.001 (sec). Leaf size: 10

dsolve(x^2*diff(y(x),x$2)+x*diff(y(x),x)=0,y(x), singsol=all)
 
\[ y = \ln \left (x \right ) c_{2} +c_{1} \]

Solution by Mathematica

Time used: 0.024 (sec). Leaf size: 13

DSolve[x^2*D[y[x],{x,2}]+x*D[y[x],x]==0,y[x],x,IncludeSingularSolutions -> True]
 
\[ y(x)\to c_1 \log (x)+c_2 \]