73.14.1 problem 21.5 (i)

Internal problem ID [15411]
Book : Ordinary Differential Equations. An introduction to the fundamentals. Kenneth B. Howell. second edition. CRC Press. FL, USA. 2020
Section : Chapter 21. Nonhomogeneous equations in general. Additional exercises page 391
Problem number : 21.5 (i)
Date solved : Tuesday, January 28, 2025 at 07:54:45 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} y^{\prime \prime }+4 y&=24 \,{\mathrm e}^{2 x} \end{align*}

With initial conditions

\begin{align*} y \left (0\right )&=6\\ y^{\prime }\left (0\right )&=6 \end{align*}

Solution by Maple

Time used: 0.016 (sec). Leaf size: 17

dsolve([diff(y(x),x$2)+4*y(x)=24*exp(2*x),y(0) = 6, D(y)(0) = 6],y(x), singsol=all)
 
\[ y = 3 \cos \left (2 x \right )+3 \,{\mathrm e}^{2 x} \]

Solution by Mathematica

Time used: 0.017 (sec). Leaf size: 17

DSolve[{D[y[x],{x,2}]+4*y[x]==24*Exp[2*x],{y[0]==6,Derivative[1][y][0] ==6}},y[x],x,IncludeSingularSolutions -> True]
 
\[ y(x)\to 3 \left (e^{2 x}+\cos (2 x)\right ) \]