Internal
problem
ID
[15052]
Book
:
Ordinary
Differential
Equations.
An
introduction
to
the
fundamentals.
Kenneth
B.
Howell.
second
edition.
CRC
Press.
FL,
USA.
2020
Section
:
Chapter
6.
Simplifying
through
simplifiction.
Additional
exercises.
page
114
Problem
number
:
6.7
(h)
Date
solved
:
Thursday, March 13, 2025 at 05:33:06 AM
CAS
classification
:
[[_homogeneous, `class G`], _rational, _Bernoulli]
ode:=diff(y(x),x)+y(x)/x = x^2*y(x)^3; dsolve(ode,y(x), singsol=all);
ode=D[y[x],x]+1/x*y[x]==x^2*y[x]^3; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-x**2*y(x)**3 + Derivative(y(x), x) + y(x)/x,0) ics = {} dsolve(ode,func=y(x),ics=ics)