Internal
problem
ID
[15063]
Book
:
Ordinary
Differential
Equations.
An
introduction
to
the
fundamentals.
Kenneth
B.
Howell.
second
edition.
CRC
Press.
FL,
USA.
2020
Section
:
Chapter
7.
The
exact
form
and
general
integrating
fators.
Additional
exercises.
page
141
Problem
number
:
7.4
(a)
Date
solved
:
Thursday, March 13, 2025 at 05:33:42 AM
CAS
classification
:
[[_homogeneous, `class A`], _exact, _rational, [_Abel, `2nd type`, `class B`]]
ode:=2*x*y(x)+y(x)^2+(2*x*y(x)+x^2)*diff(y(x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=2*x*y[x]+y[x]^2+(2*x*y[x]+x^2)*D[y[x],x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(2*x*y(x) + (x**2 + 2*x*y(x))*Derivative(y(x), x) + y(x)**2,0) ics = {} dsolve(ode,func=y(x),ics=ics)