73.6.12 problem 7.5 (b)

Internal problem ID [15072]
Book : Ordinary Differential Equations. An introduction to the fundamentals. Kenneth B. Howell. second edition. CRC Press. FL, USA. 2020
Section : Chapter 7. The exact form and general integrating fators. Additional exercises. page 141
Problem number : 7.5 (b)
Date solved : Thursday, March 13, 2025 at 05:36:11 AM
CAS classification : [[_homogeneous, `class G`], _rational]

\begin{align*} y+\left (y^{4}-3 x \right ) y^{\prime }&=0 \end{align*}

Maple. Time used: 0.006 (sec). Leaf size: 16
ode:=y(x)+(y(x)^4-3*x)*diff(y(x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y^{4}-y^{3} c_{1} +x = 0 \]
Mathematica. Time used: 52.298 (sec). Leaf size: 1270
ode=y[x]+(y[x]^4-3*x)*D[y[x],x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} \text {Solution too large to show}\end{align*}

Sympy. Time used: 53.199 (sec). Leaf size: 2077
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq((-3*x + y(x)**4)*Derivative(y(x), x) + y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \text {Solution too large to show} \]