9.2.22 problem problem 48

Internal problem ID [956]
Book : Differential equations and linear algebra, 4th ed., Edwards and Penney
Section : Section 5.3, Higher-Order Linear Differential Equations. Homogeneous Equations with Constant Coefficients. Page 300
Problem number : problem 48
Date solved : Wednesday, February 05, 2025 at 04:51:19 AM
CAS classification : [[_3rd_order, _missing_x]]

\begin{align*} y^{\prime \prime \prime }&=y \end{align*}

With initial conditions

\begin{align*} y \left (0\right )&=1\\ y^{\prime }\left (0\right )&=0\\ y^{\prime \prime }\left (0\right )&=0 \end{align*}

Solution by Maple

Time used: 0.012 (sec). Leaf size: 22

dsolve([diff(y(x),x$3)=y(x),y(0) = 1, D(y)(0) = 0, (D@@2)(y)(0) = 0],y(x), singsol=all)
 
\[ y = \frac {{\mathrm e}^{x}}{3}+\frac {2 \,{\mathrm e}^{-\frac {x}{2}} \cos \left (\frac {\sqrt {3}\, x}{2}\right )}{3} \]

Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 33

DSolve[{D[y[x],{x,3}]==y[x],{y[0]==1,Derivative[1][y][0] ==0,Derivative[2][y][0] ==0}},y[x],x,IncludeSingularSolutions -> True]
 
\[ y(x)\to \frac {1}{3} \left (e^x+2 e^{-x/2} \cos \left (\frac {\sqrt {3} x}{2}\right )\right ) \]