Internal
problem
ID
[15102]
Book
:
Ordinary
Differential
Equations.
An
introduction
to
the
fundamentals.
Kenneth
B.
Howell.
second
edition.
CRC
Press.
FL,
USA.
2020
Section
:
Chapter
8.
Review
exercises
for
part
of
part
II.
page
143
Problem
number
:
23
Date
solved
:
Thursday, March 13, 2025 at 05:39:24 AM
CAS
classification
:
[[_homogeneous, `class C`], _rational, [_Abel, `2nd type`, `class A`]]
ode:=diff(y(x),x) = (x+2*y(x))/(x+2*y(x)+3); dsolve(ode,y(x), singsol=all);
ode=D[y[x],x]==(x+2*y[x])/(x+2*y[x]+3); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-(x + 2*y(x))/(x + 2*y(x) + 3) + Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)