73.15.59 problem 22.12 (d)

Internal problem ID [15490]
Book : Ordinary Differential Equations. An introduction to the fundamentals. Kenneth B. Howell. second edition. CRC Press. FL, USA. 2020
Section : Chapter 22. Method of undetermined coefficients. Additional exercises page 412
Problem number : 22.12 (d)
Date solved : Tuesday, January 28, 2025 at 07:59:41 AM
CAS classification : [[_high_order, _missing_y]]

\begin{align*} y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }&=32 x \end{align*}

Solution by Maple

Time used: 0.003 (sec). Leaf size: 32

dsolve(diff(y(x),x$4)-4*diff(y(x),x$3)=32*x,y(x), singsol=all)
 
\[ y = -\frac {x^{4}}{3}-\frac {x^{3}}{3}+\frac {c_{2} x^{2}}{2}+\frac {{\mathrm e}^{4 x} c_{1}}{64}+x c_{3} +c_4 \]

Solution by Mathematica

Time used: 26.837 (sec). Leaf size: 68

DSolve[D[y[x],{x,4}]-4*D[y[x],{x,3}]==32*x,y[x],x,IncludeSingularSolutions -> True]
 
\[ y(x)\to \int _1^x\int _1^{K[4]}\int _1^{K[3]}e^{4 K[2]} \left (c_1+\int _1^{K[2]}32 e^{-4 K[1]} K[1]dK[1]\right )dK[2]dK[3]dK[4]+x (c_4 x+c_3)+c_2 \]