73.15.74 problem 22.15 (a)

Internal problem ID [15505]
Book : Ordinary Differential Equations. An introduction to the fundamentals. Kenneth B. Howell. second edition. CRC Press. FL, USA. 2020
Section : Chapter 22. Method of undetermined coefficients. Additional exercises page 412
Problem number : 22.15 (a)
Date solved : Tuesday, January 28, 2025 at 08:00:20 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} x^{2} y^{\prime \prime }-5 x y^{\prime }+8 y&=\frac {5}{x^{3}} \end{align*}

Solution by Maple

Time used: 0.008 (sec). Leaf size: 20

dsolve(x^2*diff(y(x),x$2)-5*x*diff(y(x),x)+8*y(x)=5/x^3,y(x), singsol=all)
 
\[ y = c_{2} x^{2}+c_{1} x^{4}+\frac {1}{7 x^{3}} \]

Solution by Mathematica

Time used: 0.016 (sec). Leaf size: 25

DSolve[x^2*D[y[x],{x,2}]-5*x*D[y[x],x]+8*y[x]==5/x^3,y[x],x,IncludeSingularSolutions -> True]
 
\[ y(x)\to c_2 x^4+\frac {1}{7 x^3}+c_1 x^2 \]