73.7.48 problem 48

Internal problem ID [15127]
Book : Ordinary Differential Equations. An introduction to the fundamentals. Kenneth B. Howell. second edition. CRC Press. FL, USA. 2020
Section : Chapter 8. Review exercises for part of part II. page 143
Problem number : 48
Date solved : Thursday, March 13, 2025 at 05:47:13 AM
CAS classification : [_linear]

\begin{align*} y^{\prime }&=x \left (6 y+{\mathrm e}^{x^{2}}\right ) \end{align*}

Maple. Time used: 0.003 (sec). Leaf size: 19
ode:=diff(y(x),x) = x*(6*y(x)+exp(x^2)); 
dsolve(ode,y(x), singsol=all);
 
\[ y = -\frac {{\mathrm e}^{x^{2}}}{4}+{\mathrm e}^{3 x^{2}} c_{1} \]
Mathematica. Time used: 0.081 (sec). Leaf size: 25
ode=D[y[x],x]==x*(6*y[x]+Exp[x^2]); 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to -\frac {e^{x^2}}{4}+c_1 e^{3 x^2} \]
Sympy. Time used: 0.275 (sec). Leaf size: 19
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x*(6*y(x) + exp(x**2)) + Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \left (C_{1} e^{2 x^{2}} - \frac {1}{4}\right ) e^{x^{2}} \]