9.2.28 problem problem 58

Internal problem ID [962]
Book : Differential equations and linear algebra, 4th ed., Edwards and Penney
Section : Section 5.3, Higher-Order Linear Differential Equations. Homogeneous Equations with Constant Coefficients. Page 300
Problem number : problem 58
Date solved : Monday, January 27, 2025 at 03:22:38 AM
CAS classification : [[_3rd_order, _exact, _linear, _homogeneous]]

\begin{align*} x^{3} y^{\prime \prime \prime }+6 x^{2} y^{\prime \prime }+7 x y^{\prime }+y&=0 \end{align*}

Solution by Maple

Time used: 0.002 (sec). Leaf size: 20

dsolve(x^3*diff(y(x),x$3)+6*x^2*diff(y(x),x$2)+7*x*diff(y(x),x)+y(x)=0,y(x), singsol=all)
 
\[ y = \frac {c_3 \ln \left (x \right )^{2}+c_2 \ln \left (x \right )+c_1}{x} \]

Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 24

DSolve[x^3*D[y[x],{x,3}]+6*x^2*D[y[x],{x,2}]+7*x*D[y[x],x]+y[x]==0,y[x],x,IncludeSingularSolutions -> True]
 
\[ y(x)\to \frac {c_3 \log ^2(x)+c_2 \log (x)+c_1}{x} \]