73.8.29 problem 13.5 (e)

Internal problem ID [15158]
Book : Ordinary Differential Equations. An introduction to the fundamentals. Kenneth B. Howell. second edition. CRC Press. FL, USA. 2020
Section : Chapter 13. Higher order equations: Extending first order concepts. Additional exercises page 259
Problem number : 13.5 (e)
Date solved : Thursday, March 13, 2025 at 05:48:02 AM
CAS classification : [[_2nd_order, _missing_y]]

\begin{align*} x y^{\prime \prime }-y^{\prime }&=6 x^{5} \end{align*}

Maple. Time used: 0.002 (sec). Leaf size: 17
ode:=x*diff(diff(y(x),x),x)-diff(y(x),x) = 6*x^5; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {1}{4} x^{6}+\frac {1}{2} c_{1} x^{2}+c_{2} \]
Mathematica. Time used: 0.028 (sec). Leaf size: 24
ode=x*D[y[x],{x,2}]-D[y[x],x]==6*x^5; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \frac {1}{4} \left (x^6+2 c_1 x^2+4 c_2\right ) \]
Sympy. Time used: 0.286 (sec). Leaf size: 14
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-6*x**5 + x*Derivative(y(x), (x, 2)) - Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} + C_{2} x^{2} + \frac {x^{6}}{4} \]