Internal
problem
ID
[15173]
Book
:
Ordinary
Differential
Equations.
An
introduction
to
the
fundamentals.
Kenneth
B.
Howell.
second
edition.
CRC
Press.
FL,
USA.
2020
Section
:
Chapter
13.
Higher
order
equations:
Extending
first
order
concepts.
Additional
exercises
page
259
Problem
number
:
13.7
(d)
Date
solved
:
Thursday, March 13, 2025 at 05:48:25 AM
CAS
classification
:
[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]
With initial conditions
ode:=y(x)*diff(diff(y(x),x),x)+2*diff(y(x),x)^2 = 3*y(x)*diff(y(x),x); ic:=y(0) = 2, D(y)(0) = 3/4; dsolve([ode,ic],y(x), singsol=all);
ode=y[x]*D[y[x],{x,2}]+2*D[y[x],x]^2==3*y[x]*D[y[x],x]; ic={y[0]==2,Derivative[1][y][0] ==3/4}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-3*y(x)*Derivative(y(x), x) + y(x)*Derivative(y(x), (x, 2)) + 2*Derivative(y(x), x)**2,0) ics = {y(0): 2, Subs(Derivative(y(x), x), x, 0): 3/4} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE sqrt(-(-9*y(x) + 8*Derivative(y(x), (x, 2)))*y(x))/4 - 3*y(x)/4 + Derivative(y(x), x) cannot be solved by the factorable group method