Internal
problem
ID
[15191]
Book
:
Ordinary
Differential
Equations.
An
introduction
to
the
fundamentals.
Kenneth
B.
Howell.
second
edition.
CRC
Press.
FL,
USA.
2020
Section
:
Chapter
14.
Higher
order
equations
and
the
reduction
of
order
method.
Additional
exercises
page
277
Problem
number
:
14.1
(i)
Date
solved
:
Thursday, March 13, 2025 at 05:49:19 AM
CAS
classification
:
[[_high_order, _missing_x]]
ode:=diff(diff(diff(diff(y(x),x),x),x),x)+6*diff(diff(y(x),x),x)+3*diff(y(x),x)-83*y(x)-25 = 0; dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,4}]+6*D[y[x],{x,2}]+3*D[y[x],x]-83*y[x]-25==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-83*y(x) + 3*Derivative(y(x), x) + 6*Derivative(y(x), (x, 2)) + Derivative(y(x), (x, 4)) - 25,0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE -83*y(x)/3 + Derivative(y(x), x) + 2*Derivative(y(x), (x, 2)) + Derivative(y(x), (x, 4))/3 - 25/3 cannot be solved by the factorable group method