73.17.49 problem 49

Internal problem ID [15583]
Book : Ordinary Differential Equations. An introduction to the fundamentals. Kenneth B. Howell. second edition. CRC Press. FL, USA. 2020
Section : Chapter 25. Review exercises for part III. page 447
Problem number : 49
Date solved : Tuesday, January 28, 2025 at 08:02:46 AM
CAS classification : [[_2nd_order, _exact, _linear, _nonhomogeneous]]

\begin{align*} x^{2} y^{\prime \prime }+3 x y^{\prime }+y&=\frac {1}{\left (1+x \right )^{2}} \end{align*}

Solution by Maple

Time used: 0.003 (sec). Leaf size: 20

dsolve(x^2*diff(y(x),x$2)+3*x*diff(y(x),x)+y(x)=1/(1+x)^2,y(x), singsol=all)
 
\[ y = \frac {c_{2} +\ln \left (x +1\right )+\left (c_{1} -1\right ) \ln \left (x \right )}{x} \]

Solution by Mathematica

Time used: 0.037 (sec). Leaf size: 23

DSolve[x^2*D[y[x],{x,2}]+3*x*D[y[x],x]+y[x]==1/(1+x)^2,y[x],x,IncludeSingularSolutions -> True]
 
\[ y(x)\to \frac {\log (x+1)+(-1+c_2) \log (x)+c_1}{x} \]