Internal
problem
ID
[15203]
Book
:
Ordinary
Differential
Equations.
An
introduction
to
the
fundamentals.
Kenneth
B.
Howell.
second
edition.
CRC
Press.
FL,
USA.
2020
Section
:
Chapter
14.
Higher
order
equations
and
the
reduction
of
order
method.
Additional
exercises
page
277
Problem
number
:
14.2
(k)
Date
solved
:
Thursday, March 13, 2025 at 05:49:27 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
Using reduction of order method given that one solution is
ode:=sin(x)^2*diff(diff(y(x),x),x)-2*cos(x)*sin(x)*diff(y(x),x)+(1+cos(x)^2)*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=Sin[x]^2*D[y[x],{x,2}]-2*Cos[x]*Sin[x]*D[y[x],x]+(1+Cos[x]^2)*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq((cos(x)**2 + 1)*y(x) + sin(x)**2*Derivative(y(x), (x, 2)) - 2*sin(x)*cos(x)*Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE -(y(x)*cos(x)**2 + y(x) + sin(x)**2*Derivative(y(x), (x, 2)))/(2*sin(x)*cos(x)) + Derivative(y(x), x) cannot be solved by the factorable group method