Internal
problem
ID
[15215]
Book
:
Ordinary
Differential
Equations.
An
introduction
to
the
fundamentals.
Kenneth
B.
Howell.
second
edition.
CRC
Press.
FL,
USA.
2020
Section
:
Chapter
14.
Higher
order
equations
and
the
reduction
of
order
method.
Additional
exercises
page
277
Problem
number
:
14.5
(c)
Date
solved
:
Thursday, March 13, 2025 at 05:49:36 AM
CAS
classification
:
[[_high_order, _missing_x]]
ode:=diff(diff(diff(diff(y(x),x),x),x),x)-8*diff(diff(diff(y(x),x),x),x)+24*diff(diff(y(x),x),x)-32*diff(y(x),x)+16*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,4}]-8*D[y[x],{x,3}]+24*D[y[x],{x,2}]-32*D[y[x],x]+16*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(16*y(x) - 32*Derivative(y(x), x) + 24*Derivative(y(x), (x, 2)) - 8*Derivative(y(x), (x, 3)) + Derivative(y(x), (x, 4)),0) ics = {} dsolve(ode,func=y(x),ics=ics)