73.20.1 problem 29.6 (a)

Internal problem ID [15610]
Book : Ordinary Differential Equations. An introduction to the fundamentals. Kenneth B. Howell. second edition. CRC Press. FL, USA. 2020
Section : Chapter 29. Convolution. Additional Exercises. page 523
Problem number : 29.6 (a)
Date solved : Tuesday, January 28, 2025 at 08:03:07 AM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} y^{\prime \prime }+4 y&=1 \end{align*}

Using Laplace method With initial conditions

\begin{align*} y \left (0\right )&=0\\ y^{\prime }\left (0\right )&=0 \end{align*}

Solution by Maple

Time used: 7.983 (sec). Leaf size: 12

dsolve([diff(y(t),t$2)+4*y(t)=1,y(0) = 0, D(y)(0) = 0],y(t), singsol=all)
 
\[ y = -\frac {\cos \left (2 t \right )}{4}+\frac {1}{4} \]

Solution by Mathematica

Time used: 0.014 (sec). Leaf size: 13

DSolve[{D[y[t],{t,2}]+4*y[t]==1,{y[0]==0,Derivative[1][y][0] ==0}},y[t],t,IncludeSingularSolutions -> True]
 
\[ y(t)\to \frac {\sin ^2(t)}{2} \]