73.11.9 problem 17.2 (c)

Internal problem ID [15244]
Book : Ordinary Differential Equations. An introduction to the fundamentals. Kenneth B. Howell. second edition. CRC Press. FL, USA. 2020
Section : Chapter 17. Second order Homogeneous equations with constant coefficients. Additional exercises page 334
Problem number : 17.2 (c)
Date solved : Thursday, March 13, 2025 at 05:50:31 AM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} y^{\prime \prime }-8 y^{\prime }+15 y&=0 \end{align*}

With initial conditions

\begin{align*} y \left (0\right )&=5\\ y^{\prime }\left (0\right )&=19 \end{align*}

Maple. Time used: 0.013 (sec). Leaf size: 17
ode:=diff(diff(y(x),x),x)-8*diff(y(x),x)+15*y(x) = 0; 
ic:=y(0) = 5, D(y)(0) = 19; 
dsolve([ode,ic],y(x), singsol=all);
 
\[ y = 2 \,{\mathrm e}^{5 x}+3 \,{\mathrm e}^{3 x} \]
Mathematica. Time used: 0.013 (sec). Leaf size: 20
ode=D[y[x],{x,2}]-8*D[y[x],x]+15*y[x]==0; 
ic={y[0]==5,Derivative[1][y][0] ==19}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to e^{3 x} \left (2 e^{2 x}+3\right ) \]
Sympy. Time used: 0.185 (sec). Leaf size: 15
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(15*y(x) - 8*Derivative(y(x), x) + Derivative(y(x), (x, 2)),0) 
ics = {y(0): 5, Subs(Derivative(y(x), x), x, 0): 19} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \left (2 e^{2 x} + 3\right ) e^{3 x} \]