73.23.7 problem 33.3 (g)

Internal problem ID [15653]
Book : Ordinary Differential Equations. An introduction to the fundamentals. Kenneth B. Howell. second edition. CRC Press. FL, USA. 2020
Section : Chapter 33. Power series solutions I: Basic computational methods. Additional Exercises. page 641
Problem number : 33.3 (g)
Date solved : Tuesday, January 28, 2025 at 08:03:41 AM
CAS classification : [_separable]

\begin{align*} y^{\prime }+\frac {y}{x -1}&=0 \end{align*}

Using series method with expansion around

\begin{align*} 3 \end{align*}

Solution by Maple

Time used: 0.001 (sec). Leaf size: 45

Order:=6; 
dsolve(diff(y(x),x)+1/(x-1)*y(x)=0,y(x),type='series',x=3);
 
\[ y = \left (\frac {5}{2}-\frac {x}{2}+\frac {\left (x -3\right )^{2}}{4}-\frac {\left (x -3\right )^{3}}{8}+\frac {\left (x -3\right )^{4}}{16}-\frac {\left (x -3\right )^{5}}{32}\right ) y \left (3\right )+O\left (x^{6}\right ) \]

Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 53

AsymptoticDSolveValue[D[y[x],x]+1/(x-1)*y[x]==0,y[x],{x,3,"6"-1}]
 
\[ y(x)\to c_1 \left (-\frac {1}{32} (x-3)^5+\frac {1}{16} (x-3)^4-\frac {1}{8} (x-3)^3+\frac {1}{4} (x-3)^2+\frac {3-x}{2}+1\right ) \]