73.12.11 problem 19.2 (e)

Internal problem ID [15284]
Book : Ordinary Differential Equations. An introduction to the fundamentals. Kenneth B. Howell. second edition. CRC Press. FL, USA. 2020
Section : Chapter 19. Arbitrary Homogeneous linear equations with constant coefficients. Additional exercises page 369
Problem number : 19.2 (e)
Date solved : Thursday, March 13, 2025 at 05:51:58 AM
CAS classification : [[_high_order, _missing_x]]

\begin{align*} y^{\prime \prime \prime \prime }+y^{\prime \prime \prime }+2 y^{\prime \prime }+4 y^{\prime }-8 y&=0 \end{align*}

Maple. Time used: 0.004 (sec). Leaf size: 37
ode:=diff(diff(diff(diff(y(x),x),x),x),x)+diff(diff(diff(y(x),x),x),x)+2*diff(diff(y(x),x),x)+4*diff(y(x),x)-8*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \left ({\mathrm e}^{3 x} c_{2} +c_{3} \sin \left (2 x \right ) {\mathrm e}^{2 x}+c_4 \cos \left (2 x \right ) {\mathrm e}^{2 x}+c_{1} \right ) {\mathrm e}^{-2 x} \]
Mathematica. Time used: 0.003 (sec). Leaf size: 34
ode=D[y[x],{x,4}]+D[y[x],{x,3}]+2*D[y[x],{x,2}]+4*D[y[x],x]-8*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to c_3 e^{-2 x}+c_4 e^x+c_1 \cos (2 x)+c_2 \sin (2 x) \]
Sympy. Time used: 0.207 (sec). Leaf size: 27
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-8*y(x) + 4*Derivative(y(x), x) + 2*Derivative(y(x), (x, 2)) + Derivative(y(x), (x, 3)) + Derivative(y(x), (x, 4)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} e^{- 2 x} + C_{2} e^{x} + C_{3} \sin {\left (2 x \right )} + C_{4} \cos {\left (2 x \right )} \]