73.12.21 problem 19.4 (e)

Internal problem ID [15294]
Book : Ordinary Differential Equations. An introduction to the fundamentals. Kenneth B. Howell. second edition. CRC Press. FL, USA. 2020
Section : Chapter 19. Arbitrary Homogeneous linear equations with constant coefficients. Additional exercises page 369
Problem number : 19.4 (e)
Date solved : Thursday, March 13, 2025 at 05:52:04 AM
CAS classification : [[_high_order, _missing_x]]

\begin{align*} y^{\left (6\right )}-3 y^{\prime \prime \prime \prime }+3 y^{\prime \prime }-y&=0 \end{align*}

Maple. Time used: 0.004 (sec). Leaf size: 33
ode:=diff(diff(diff(diff(diff(diff(y(x),x),x),x),x),x),x)-3*diff(diff(diff(diff(y(x),x),x),x),x)+3*diff(diff(y(x),x),x)-y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = {\mathrm e}^{-x} \left (x^{2} c_{3} +c_{2} x +c_{1} \right )+{\mathrm e}^{x} \left (x^{2} c_6 +x c_5 +c_4 \right ) \]
Mathematica. Time used: 0.003 (sec). Leaf size: 50
ode=D[y[x],{x,6}]-3*D[y[x],{x,4}]+3*D[y[x],{x,2}]-y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to e^{-x} \left (x^2 \left (c_6 e^{2 x}+c_3\right )+x \left (c_5 e^{2 x}+c_2\right )+c_4 e^{2 x}+c_1\right ) \]
Sympy. Time used: 0.121 (sec). Leaf size: 26
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-y(x) + 3*Derivative(y(x), (x, 2)) - 3*Derivative(y(x), (x, 4)) + Derivative(y(x), (x, 6)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \left (C_{1} + x \left (C_{2} + C_{3} x\right )\right ) e^{- x} + \left (C_{4} + x \left (C_{5} + C_{6} x\right )\right ) e^{x} \]