73.24.12 problem 34.6 (b)

Internal problem ID [15692]
Book : Ordinary Differential Equations. An introduction to the fundamentals. Kenneth B. Howell. second edition. CRC Press. FL, USA. 2020
Section : Chapter 34. Power series solutions II: Generalization and theory. Additional Exercises. page 678
Problem number : 34.6 (b)
Date solved : Tuesday, January 28, 2025 at 08:05:25 AM
CAS classification : [_separable]

\begin{align*} y^{\prime }+{\mathrm e}^{2 x} y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Solution by Maple

Time used: 0.000 (sec). Leaf size: 37

Order:=6; 
dsolve(diff(y(x),x)+exp(2*x)*y(x)=0,y(x),type='series',x=0);
 
\[ y = \left (1-x -\frac {1}{2} x^{2}+\frac {1}{6} x^{3}+\frac {3}{8} x^{4}+\frac {23}{120} x^{5}\right ) y \left (0\right )+O\left (x^{6}\right ) \]

Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 39

AsymptoticDSolveValue[D[y[x],x]+Exp[2*x]*y[x]==0,y[x],{x,0,"6"-1}]
 
\[ y(x)\to c_1 \left (\frac {23 x^5}{120}+\frac {3 x^4}{8}+\frac {x^3}{6}-\frac {x^2}{2}-x+1\right ) \]