73.24.18 problem 34.7 (d)

Internal problem ID [15698]
Book : Ordinary Differential Equations. An introduction to the fundamentals. Kenneth B. Howell. second edition. CRC Press. FL, USA. 2020
Section : Chapter 34. Power series solutions II: Generalization and theory. Additional Exercises. page 678
Problem number : 34.7 (d)
Date solved : Tuesday, January 28, 2025 at 08:05:31 AM
CAS classification : [_Titchmarsh]

\begin{align*} y^{\prime \prime }+y \ln \left (x \right )&=0 \end{align*}

Using series method with expansion around

\begin{align*} 1 \end{align*}

Solution by Maple

Time used: 0.002 (sec). Leaf size: 55

Order:=6; 
dsolve(diff(y(x),x$2)+ln(x)*y(x)=0,y(x),type='series',x=1);
 
\[ y = \left (1-\frac {\left (x -1\right )^{3}}{6}+\frac {\left (x -1\right )^{4}}{24}-\frac {\left (x -1\right )^{5}}{60}\right ) y \left (1\right )+\left (x -1-\frac {\left (x -1\right )^{4}}{12}+\frac {\left (x -1\right )^{5}}{40}\right ) y^{\prime }\left (1\right )+O\left (x^{6}\right ) \]

Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 60

AsymptoticDSolveValue[D[y[x],{x,2}]+Log[x]*y[x]==0,y[x],{x,1,"6"-1}]
 
\[ y(x)\to c_1 \left (-\frac {1}{60} (x-1)^5+\frac {1}{24} (x-1)^4-\frac {1}{6} (x-1)^3+1\right )+c_2 \left (\frac {1}{40} (x-1)^5-\frac {1}{12} (x-1)^4+x-1\right ) \]