Internal
problem
ID
[15319]
Book
:
Ordinary
Differential
Equations.
An
introduction
to
the
fundamentals.
Kenneth
B.
Howell.
second
edition.
CRC
Press.
FL,
USA.
2020
Section
:
Chapter
20.
Euler
equations.
Additional
exercises
page
382
Problem
number
:
20.2
(b)
Date
solved
:
Thursday, March 13, 2025 at 05:54:31 AM
CAS
classification
:
[[_Emden, _Fowler], [_2nd_order, _linear, `_with_symmetry_[0,F(x)]`]]
With initial conditions
ode:=4*x^2*diff(diff(y(x),x),x)+4*x*diff(y(x),x)-y(x) = 0; ic:=y(4) = 0, D(y)(4) = 2; dsolve([ode,ic],y(x), singsol=all);
ode=4*x^2*D[y[x],{x,2}]+4*x*D[y[x],x]-y[x]==0; ic={y[4]==0,Derivative[1][y][4]==2}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(4*x**2*Derivative(y(x), (x, 2)) + 4*x*Derivative(y(x), x) - y(x),0) ics = {y(4): 0, Subs(Derivative(y(x), x), x, 4): 2} dsolve(ode,func=y(x),ics=ics)