73.24.28 problem 34.9 b(iv)

Internal problem ID [15708]
Book : Ordinary Differential Equations. An introduction to the fundamentals. Kenneth B. Howell. second edition. CRC Press. FL, USA. 2020
Section : Chapter 34. Power series solutions II: Generalization and theory. Additional Exercises. page 678
Problem number : 34.9 b(iv)
Date solved : Tuesday, January 28, 2025 at 08:05:43 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} \sqrt {x}\, y^{\prime \prime }+y^{\prime }+y x&=0 \end{align*}

Using series method with expansion around

\begin{align*} 1 \end{align*}

Solution by Maple

Time used: 0.017 (sec). Leaf size: 62

Order:=5; 
dsolve(sqrt(x)*diff(y(x),x$2)+diff(y(x),x)+x*y(x)=0,y(x),type='series',x=1);
 
\[ y = \left (1-\frac {\left (x -1\right )^{2}}{2}+\frac {\left (x -1\right )^{3}}{12}-\frac {\left (x -1\right )^{4}}{96}\right ) y \left (1\right )+\left (x -1-\frac {\left (x -1\right )^{2}}{2}+\frac {\left (x -1\right )^{3}}{12}-\frac {3 \left (x -1\right )^{4}}{32}\right ) y^{\prime }\left (1\right )+O\left (x^{5}\right ) \]

Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 69

AsymptoticDSolveValue[Sqrt[x]*D[y[x],{x,2}]+D[y[x],x]+x*y[x]==0,y[x],{x,1,"5"-1}]
 
\[ y(x)\to c_1 \left (-\frac {1}{96} (x-1)^4+\frac {1}{12} (x-1)^3-\frac {1}{2} (x-1)^2+1\right )+c_2 \left (-\frac {3}{32} (x-1)^4+\frac {1}{12} (x-1)^3-\frac {1}{2} (x-1)^2+x-1\right ) \]